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Abstract Next-generation sequencing provides technologies
which sequence whole prokaryotic and eukaryotic genomes in
days, perform genome-wide association studies, chromatin
immunoprecipitation followed by sequencing and RNA
sequencing for transcriptome studies. An exponentially
growing volume of sequence data can be anticipated, yet
functional interpretation does not keep pace with the amount
of data produced. In principle, these data contain all the secrets
of living systems, the genotype–phenotype relationship.
Firstly, it is possible to derive the structure and connectivity
of the metabolic network from the genotype of an organism in
the form of the stoichiometric matrix N. This is, however,
static information. Strategies for genome-scale measurement,
modelling and predicting of dynamic metabolic networks
need to be applied. Consequently, metabolomics science—
the quantitative measurement of metabolism in conjunction
with metabolic modelling—is a key discipline for the
functional interpretation of whole genomes and especially
for testing the numerical predictions of metabolism based on
genome-scale metabolic network models. In this context, a
systematic equation is derived based on metabolomics
covariance data and the genome-scale stoichiometric matrix
which describes the genotype–phenotype relationship.
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Abbreviations
EST Expressed sequence tag
FBA Flux balance analysis
GC × GC-TOF-MS Two-dimensional gas

chromatography coupled with
fast acquisition rate time-of-
flight mass spectrometry

GC-MS Gas chromatography coupled
with mass spectrometry

GC-TOF-MS Gas chromatography coupled
with time-of-flight mass
spectrometry

LC-MS Liquid chromatography coupled
with mass spectrometry

NGS Next-generation sequencing

Introduction

We have witnessed an exponential growth of public genome
sequence releases (http://www.genomesonline.org/). In
principle, this amount of data will enable us to investigate
any subtle aspect in living systems. However, the process of
whole-genome assembly and functional gene annotation of
de novo sequenced organisms is far behind the speed of
data generation using next-generation sequencing (NGS)
technologies [1–4]. Whole genome assembly and ab initio
gene prediction is in the first instance dependent on
algorithms. In recent studies, approaches have been pre-
sented for functional annotation of newly sequenced
genomes combining complementary DNA [expressed se-
quence tag (EST), messenger RNA or RNA-sequencing
data] with gene predictions [5]. More recently, proteoge-
nomic studies have used proteomics data to reveal new gene
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models [6–8]. A truly systems biology approach is the
integration of several layers of molecular information in
conjunction with metabolic modelling [7]. In this study,
genome annotation with metabolomics data and a structural
modelling approach were combined for the first time [7].

Besides the qualitative or structural investigation of
genome function and metabolic networks, the next aim is
to explore the quantitative prediction. Here, dynamic
modelling is the key approach. The final goal is genome-
scale metabolic reconstruction and quantitative understanding
and prediction of metabolism in a newly sequenced organism,
the genotype–phenotype relationship. By reviewing the
literature it becomes clear that this is the limiting step in the
functional interpretation of whole genomes and organisms.
Only an iterative cycle of improving genome annotation,
structural and dynamic modelling and comparison of the
predictions with experimental data will be successful,
necessitating not only further development of computer-
based annotation of gene functions and modelling algorithms
but also the integration of whole metabolome profiling
approaches. In the next sections I will explore the strategies
and limitations of how to connect metabolomics data and
genome-derived metabolic reconstruction and suggest a
complete workflow. A systematic equation is derived for the
genotype–phenotype relationship.

Next-generation sequencing, gene prediction
and functional annotation

Recent developments in bioanalytical chemistry have led to
an ongoing replacement of classical Sanger DNA sequenc-
ing technology. Sanger sequencing is one of the first-
generation DNA-sequencing techniques which resulted in
monumental achievements, such as the first human genome
sequence. This technique provides long sequence reads and
belongs to the high-quality methods (see later). Drawbacks
are high costs and a relatively low throughput [9]. The
demand for rapid and cost-effective sequencing technolo-
gies and a consequent funding policy for method develop-
ment has led to the development of several alternative
approaches which are different in the use of genomic
template libraries, the number of reads, the read length,
genome coverage, the scale of the application and many
other parameters (for an overview, see [9]). More important,
NGS platforms have dramatically increased the throughput
and substantially lowered reagent costs. As a result of these
developments, the limitations of DNA sequencing shifted
from the hardware to the software. The strongest draw-
backs of any of these technologies are short read lengths
compared with Sanger sequencing (454/Roche approxi-
mately 400 bases; Illumina/ABI-SOLiD approximately
60–100 bases; Sanger sequencing approximately 1,000

bases [1–4]) as well as different error characteristics. As a
result, the assembly of genome sequences from these short
reads is difficult and demands high computer power, novel
algorithms and partial complementation and verification
with high-quality sequencing strategies such as third-
generation long-read technology or Sanger sequencing
[10–12].

After or during genome sequence assembly, gene
prediction and functional annotation are the concomitant
steps. Ab initio gene prediction allowing constraints is
being increasingly favoured [5, 13]. Here, especially
NGS transcriptomics data can be used for gene prediction
and functional annotation. Longer contig and singleton
sequences are assembled from short reads and analysed for
homology with sequences in public databases using
BLAST algorithms. Assembled contigs and singletons are
subsequently translated into peptides and annotated with
biological function using a homology search against
various public databases [12].

Proteomics data can also be exploited for gene prediction
and functional gene annotation in fully sequenced organ-
isms [6–8, 14–16]. Here, very large proteomics datasets
covering up to 60% or more of the predicted proteome are
matched against genomics databases, especially six frame
translations, to discover novel peptides which are not
predicted by the assembled and functionally annotated
genome sequence because of wrongly annotated intron–
exon boarders or completely missing annotations.

Recently, we have also used metabolomics data for
functional annotation of the newly sequenced organism
Chlamydomonas reinhardtii [7]. The comparison of all
metabolites with the reconstructed metabolic network
of Chlamydomonas reinhardtii revealed missing reac-
tions. This observation was combined with a structural
modelling approach and demonstrated that several
metabolites cannot be synthesized or generated with the
existing metabolic draft network of Chlamydomonas rein-
hardtii, pointing towards missing reactions or alternative
pathways.

The quality of full genome annotation depends on the
functional characterization of orthologous genes in other
organisms. With sequence homology, a function can only be
postulated. Gene functions are usually derived by classic
biochemical studies such as complementary assays, cloning,
enzyme substrate and activity tests, protein interaction tests
and gene knockouts or conditional knockouts in the organism
of interest. Many of the data obtained are assembled in
databases such as STRING (http://string-db.org/) and can be
systematically searched for any gene sequence. Furthermore,
the function of a gene can be estimated if functional domains
such as ATP-binding sites or protein kinase domains can be
characterized (see [17] and http://pfam.sanger.ac.uk/).
However, one has to be aware that a gene function prediction
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by homology with other orthologues is only a first step and
needs further confirmation.

After gene prediction and annotation of a newly
sequenced genome, the next step in the functional under-
standing of the organism is the reconstruction of the
metabolic network, the metabolism specific to this species.
Nowadays this is a straightforward and routine procedure.
The procedure is described in the following section.

Ab initio prediction of metabolic networks from full
genome sequences—static genotype information needs
to be translated into dynamic molecular phenotype
information

The workflow to predict an initial metabolic network
from an annotated genome sequence is shown in Fig. 1.
First, the NGS short reads are assembled to form a
complete genome sequence and these sequences are
analysed for intron/exon structure, start and stop codons
and homology with known sequences (see “Next-genera-
tion sequencing, gene prediction and functional annota-
tion”). After a genome-scale functional annotation based
on the homology with functionally characterized genes
from other organisms, a gene list is assembled. On the
basis of this gene list, enzymatic reactions are postulated.
Educts and products participate in an enzymatic reaction.
Pathways are structured so that the product of the former
enzymatic reaction is the educt of the next enzymatic
reaction, for instance in glycolysis. Thus, the list of
reactions can be mapped to existing knowledge of path-
ways. Fragmentary pathways can be filled up with
reactions if the corresponding gene is not annotated in
the genome sequence. On the basis of this reaction list, a
stoichiometric matrix can be built, also known from
chemical reaction lists. Only one principle applies here,
which is mass conservation, e.g. one molecule of glucose
is converted into two molecules of triose phosphate. In
Fig. 2 the principles of generating a stoichiometric matrix
from a list of coupled enzymatic reactions are exemplified.
These principles can be extended to whole-genome-scale
metabolic reconstruction (see “Modelling approaches for
metabolic networks” and [18, 19]). On the basis of this
stoichiometric matrix, a metabolic network can be postulated
for an organism (Fig. 1). Nowadays, the whole workflow can
be automated [18].

Although the strategy is very sound, there are several
obstacles which have to be clarified. First, this metabolic
network reconstruction produces static information. It
cannot be assumed that all reactions are present or active
at the same time, so we have to measure the active pathway
network. The active pathway network is the short- and
longterm molecular response of the organism to envi-

ronmental perturbations, for instance a plant will change
its metabolic activity in a day-night-rhythm or adapt in
a longterm behaviour to environmental conditions [20]
(see Fig. 3). Information on this active metabolic network
can be achieved by integrative approaches combing
metabolomics, proteomics and transcriptomics data as
well as metabolic flux analysis [21–25], and this is further
discussed later.

Second, there is a strong bias for metabolic network
reconstruction based on our classical biochemical knowl-
edge, the annotated gene functions in public databases and
our incompetence to characterize a gene functionally
without any homology match in the databases. In other
words, one might observe that the reconstructed metabolic
networks look very similar, although we would expect
exactly the opposite. This was indeed observed in a
comparative network topology study of metabolic networks

NGS
(Next Generation 

Sequencing)

Assembly
Gene prediction 
Homology search
Gene annotation 

Gene  List
Metabolic reaction/
Pathway mapping

Stoichiometric
Matrix (N)

Metabolic Network

STATIC 
INFORMATION

Fig. 1 The static genotype. The complete workflow for ab initio
prediction of metabolic networks from genome sequences. Central
information is the functional annotation of genes based on homology
with genes from other organisms and the corresponding stoichiometric
matrix N. The resulting reconstructed metabolic network provides not
dynamic but static information (for details, see text)
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from 43 organisms showing similar diameters [26]. At that
time, in fact, the databases of reaction pathways, metabolic
networks and genome sequences were only fragmentary;
one should be aware that all our classical hypothesis-driven
research is strongly biased by our present knowledge [27].
This, on the other hand, is a strong argument for the
application of unbiased omics measurements, especially
metabolomics with respect to metabolic networks. In Fig. 3,
metabolite measurements of a recent environmental study
are shown. Five different plant species were analysed by
gas chromatography coupled with time-of-flight mass
spectrometry (GC-TOF-MS) and independent compo-
nents analysis [28]. All the plant species were classified
differently using the same set of identified and quantified
metabolites. These sets of altered metabolites are
physiological markers pointing to various regulations
in plant metabolism depending on the genotype.

In summary, next-generation genome sequencing and
metabolic reconstruction will reveal static metabolism, yet
the measurements demonstrated how dynamic and different
these species are in their metabolic response to the
environment [28]. Consequently, the combination of (1)
systematic metabolite measurements and (2) modelling

approaches which can predict dynamic metabolism on the
basis of genome annotation and metabolic network recon-
struction is urgently needed. In the following section,
modelling approaches are briefly summarized.

(i)

(ii)

Fig. 3 The dynamic phenotype. Principal components analysis of
metabolite profiles of Arabidopsis thaliana showing an oscillating
molecular phenotype in a day–night rhythm (i) (for further details, see
Morgenthal et al. [20]). This analysis demonstrates that the same
genotype will produce all sorts of different molecular phenotypes,
indicating the plasticity of metabolism as a direct result of the
genotype-phenotype relationship. The main task is to predict such
behaviour from the genotype (for more details, see text). Another
example of variable molecular phenotypes based on metabolite
profiling in five different plant species is shown in ii. Metabolites
were measured by gas chromatography coupled with time-of-flight
mass spectrometry and analysed with independent components
analysis (ICA). Each species is clearly distinguished from the others.
All these species also show different metabolic responses to
biodiversity. The most pronounced effects of this phenotypic plasticity
are found in distinct metabolite markers for C/N partitioning of central
metabolism (for more information, see [28] and text)

Fig. 2 Construction of a stoichiometric matrix. A list of genes is
identified to encode enzymes for reactions v1–v3 and metabolites
M1–M4 (i). The corresponding enzymatic reaction network is shown
in ii. The reaction rates of metabolites M1–M4 are expressed as the
product of the flux vector and the stoichiometric matrix N (iii). The
stoichiometric matrix N is derived directly from the gene list and the
predicted pathways
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Modelling approaches for metabolic networks

The initial phase of prediction for species-specific metab-
olism requires an understanding of the metabolic network
or better the complete picture of metabolism in the targeted
biological system. The genome-derived stoichiometric
matrix N (see the previous section) provides the “structure”
of the metabolic network and is the basis for almost all
modelling approaches. Thus, structural analysis identifies
entry points for the ab initio-modelling of pathway- and
genome-derived metabolic networks. A plethora of methods
exist to address structural modelling, kinetic modelling and
control of metabolism, namely flux balance analysis (FBA)
and elementary flux modes, kinetic modelling using complex
differential equations and kinetic constants, and metabolic
control analysis (for a review, see [29]).

The classic approach of modelling metabolic systems is
the computer-based simulation of time-dependent metabo-
lite concentrations using ordinary differential equations
[30]. Kinetic modelling is severely hampered by the lack
of knowledge of in vivo kinetic rate laws and enzymatic
parameters, and is thus only applied in small-scale networks
with well-characterized enzymatic reactions. Examples of
these pathways are the glycolytic pathway and the red
blood cell [31–36].

Predictions of metabolite concentrations from these
modelling approaches have partly matched experimental
data. For a genome-scale metabolic network prediction,
however, there are still too many enzymatic parameters
missing. A promising approach here is inverse parameter
estimation (for a review, see [37]).

FBA provides a framework for metabolic reconstruc-
tion and constraint-based metabolic flux analysis of an
organism without the need for detailed kinetic modelling
[38–42].

On the basis of the reconstructed metabolic network for
a particular organism derived from its genome sequence
and bioinformatics (gene predictions, functional assign-
ments based on homology) and experimental annotation
(e.g. EST sequences, proteomics measurements) and arresting
mass balance, it is relatively straightforward to write down all
reactions and processes that alter the concentrations of a
metabolite based on the stoichiometry of the metabolic
reactions called the stoichiometric matrix N (see also the
previous section and Fig. 2).

The steady-state solutions (dMdt ¼ Nv ¼ 0, where M is
the matrix of metabolite concentrations, t is time, N is the
stoichiometric matrix and v is a vector including all
fluxes—metabolic, transport and usage fluxes) of this
postulated metabolic network can be obtained by linear
mathematics assuming mass conservation and constraints
such as optimized biomass production or metabolite
secretion, or both [43, 44].

Kinetic modelling and FBA will reveal metabolite
concentrations and metabolic fluxes, respectively, by
numerical simulations solving the steady-state solutions of
a metabolic network. Thus, in principle, it is possible to
generate the complete stoichiometric matrix N from a
newly sequenced and assembled genome of an organism by
NGS and subsequently define metabolite dynamics in this
postulated network. Several large-scale projects focus on
this strategy [18, 19, 45].

However, the reality check reveals the complexity of
such an approach. Most of the published metabolic network
reconstructions of model organisms undergo permanent
optimization and improvement for decades [46] using
biochemist experts’ knowledge, proteogenomic methods
[6, 7, 14] and supplementation of genome sequences with
RNA sequencing and EST data [5, 47].

Most important, all these simulations of metabolite
dynamics provide information of only a snapshot of the
system. Any transitions of the organisms due to environ-
mental perturbations will result in changes of the active
pathway/regulation network (see Fig. 3); thus, they will
also change the enzymatic and regulatory reaction rates.
The most direct readout of this phenomenon is the
measurement of metabolite concentrations and fluxes, in
genome-scale metabolomics measurements. To test computer
simulations in a useful manner, we need these metabolomics
measurements also to reveal transient behaviour. Therefore,
the combination of NGS, metabolic network reconstruction
and metabolomics science—the quantitative measurement of
metabolism and metabolic modelling—seems to be most
suitable.

Proving the predictions—metabolomics science

Bioanalytical methods in metabolomics science provide the
most direct tools for the quantitative measurement of
metabolism in an organism (for reviews, see [48, 49]). The
physicochemical diversity of small biological molecules in a
biological organism still exceeds our analytical capacities,
and the general estimation of the size and dynamic range of
a species-specific metabolome is at a preliminary stage. In
the plant kingdom the structural diversity is enormous, with
new compounds being revealed on a daily basis. Estimates
exceed five million putative structures. A combination of
analytical techniques has to be used to cope with such
diversity [48]. Mass spectrometry is one of the technologies
which has developed rapidly and also revolutionized the
field. In Table 1 different “hyphenated” technologies are
presented. Each different technique provides different features.
Therefore, it can be expected that by combining different
technologies, we will substantially increase the coverage of a
metabolome. Metabolic fingerprinting techniques using, for
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instance, NMR or IR spectroscopy achieve a high sample
throughput and provide a global view on in vivo dynamics of
metabolic networks [48, 50]. One of the gold standard
techniques in terms of sample throughput, comprehensiveness
and accuracy in metabolite identification is gas chromatogra-
phy coupled with mass spectrometry [20, 51–56].

A very recent development is the use of two-dimensional
gas chromatography coupled with fast acquisition rate time-
of-flight mass spectrometry (GC × GC-TOF-MS). The
online coupling of two gas chromatography columns with
different functionality, for instance a first, long hydrophobic
and a second, short polar column, increases the separa-
tion efficiency of a complex metabolomic sample and
improves spectral quality after deconvolution. However,
the deconvolution process from such extended two-
dimensional raw chromatograms is very complicated.

Moreover, metabolite identification and data alignment is
the bottleneck. Recently, we presented a complete
strategy to perform a convenient data extraction and
alignment using two-dimensional gas chromatography
coupled with mass spectrometry (GCxGC-MS) technology
[25]. Especially important is the introduction of a second
retention index which can be used to increase the confidence
in metabolite identification. One of the most promising
platforms for metabolomics is the combination of gas
chromatography coupled with mass spectrometry (GC-MS)
and liquid chromatography coupled with mass spectrometry
(LC-MS) (see Fig. 4) [28]. Because of the specific
technology, both technologies provide a complementary
view of the metabolome [28]—central metabolites such as
amino acids, sugars, organic acids and free fatty acids by
GC-MS, and higher molecular masses, e.g. secondary

Table 1 Mass analyzers, “hyphenated” techniques and their performances

Mass analyzer Ionization
technique

Chromatography Scan modes Speediness/sensitivity/mass accuracy

Quadrupole ESI, EI, CI, FI GC, CE, LC Full scan Scan speed slow, faster with SIM mode,
but mass range restrictedAPCI, APPI SIM

Triple quadrupole ESI GC, CE, LC Full scan Full scan slow

MRM very fast and sensitiveAPCI, APPI SIM

MS2

SRM/MRM Exact masses with internal calibrationMALDI

Triple quadrupole linear trap ESI CE, LC Full scan Full scan medium
APCI, APPI

MALDI MS2, MS3

SRM/MRM MS3 possible

Ion trap ESI, EI, CI GC, CE, LC Full scan As for above
SIMAPCI, APPI

MS2, MSnMALDI

Linear ion trap ESI CE, LC Full scan Very fast and sensitive full scan
APCI, APPI SIM

MS2, MSn Rest as aboveMALDI

TOF ESI, EI, FI GC, CE, LC Full scan Very sensitive full scan
APCI, APPI Exact masses with internal calibrationSource

fragmentationMALDI

Quadrupole TOF ESI CE, LC Full scan Most sensitive full scan

Exact masses with internal calibrationAPCI, APPI MS2

MALDI Resolution 20,000

Orbitrap ESI, LC Full scan Exact masses (<2 ppm) without internal calibration
APCI, APPI MS2, MSn Resolution 100,000
MALDI

FTICR ESI, EI, FI LC Full scan Exact masses (<1 ppm) without internal calibration
APCI, APPI Resolution 1,000,000MS2, MSn

MALDI

TOF Time of flight, FTICR Fourier transform ion cyclotron resonance, ESI Electrospray ionization, EI Electron impact, CI Chemical ionization,
FI Field ionization, APCI Atmospheric pressure chemical ionization, APPI Atmospheric pressure photoionization, MALDI Matrix-assisted laser
desorption ionization, GC Gas chromatography, CE Capillary electrophoresis, LC Liquid chromatography, SIM Single ion monitoring, MS Mass
spectrometry, SRM Single reaction monitoring, MRM Multiple reaction monitoring
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metabolites, cofactors and sugar phosphates by LC-MS.
In Fig. 4 such a platform is shown combining GCxGC-
MS and LC-MS for metabolome analysis. However, the
reader should be aware that most of the metabolomics
platforms still need further method validation and daily
quality checks. This is an essential requirement to guarantee
meaningful biological applications. Furthermore, improve-
ment of databases, experimental standards and data ex-
changeability between laboratories is an urgent issue for
further developments in metabolomics [57] (see “Metabo-
lome coverage has to be improved by the combination of
different analytical procedures, international cooperation and
open source databases and software”).

In Fig. 5 the classic chemometric approach for the
analysis of complex metabolomic data sets is shown. The
analysis of hundreds of biological replicates of an organism
under different controlled environmental treatments in the
natural environment or with genotypic variation will result
in a complex data matrix. This data matrix can be analysed
by classic multivariate or univariate statistical tools,
supervised or unsupervised methods (for an overview, see
[60]. One of the central results of such an experimental
design is the covariance matrix C of metabolite concen-
trations or fluxes [20, 22, 59, 60].

The major question is now how this covariance matrix C
of metabolite concentrations and fluxes is related to the

underlying metabolic network. I will address this question
in the next sections and will also demonstrate that there is a
direct relationship between the covariance matrix C of
metabolite concentrations and fluxes and the genome-scale
reconstruction of the underlying metabolic network.

A systematic genotype–phenotype equation: connecting
metabolomics covariance data (C) and genome-scale
metabolic network reconstruction (N)

Recently, we proposed a systematic approach to connect the
observed covariance matrix C of metabolite concentrations
with the underlying biochemical system and the
corresponding genotype, respectively [21, 58]. This rela-
tionship is characterized by the following equation [61]:

CJT þ JC ¼ �2D: ð1Þ

Here, J is the Jacobian matrix (for the relationship
between metabolic networks and the Jacobian, see [62]), D
is the fluctuation or diffusion matrix (for more information,
see [64]), the diagonal entries Dii characterize the magni-
tude of fluctuations of each metabolite, whereas off-
diagonal entries Dij (i≠ j) represent the fluctuation of
metabolites caused by the interaction between enzymes i

GCxGC-MS 

postprocessing 

extraction of m/z, RI, mass 
spectra, m/z-fragment 

intensities or integrals, sample 
versus variable alignment 

extraction of accurate precursor 
m/z, RI, mass spectra, peak or 
m/z-fragment intensities or 

integrals, sample versus variable 
alignment 

UPLC-high mass 
accuracy/resolution-MS 

postprocessing 

Data Matrix 

Multivariate statistics – COVARIANCE MATRIX (C)  

Mass spectral reference 
database 

Mass spectral 
reference database 

Fig. 4 Metabolomic platform combining the techniques of gas
chromatography coupled with mass spectrometry (GC MS) and liquid
chromatography coupled with mass spectrometry to cope with
metabolomic complexity in biological systems [28]. GC-MS is one
of the current “gold standards” with respect to comprehensiveness,
sample throughput and identification rates [52]. Two-dimensional gas
chromatography (CC × GC) coupled with fast acquisition rate time-of-
flight mass spectrometry further increases the resolution of ultra-

complex metabolome samples [25]. High-mass-accuracy/high-resolution
mass spectrometry emerges in parallel with high-resolution ultra-
performance liquid chromatography (UPLC) and increases the detection
capacities by orders of magnitude. Data can be combined in one data
matrix to reveal the covariance matrix for the detection of physiological
biomarkers, metabolite correlation networks and network topologies
(see the text for further details and [20, 21, 28, 58, 59]). MS mass
spectrometry, RI retention index
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and j, and C is the covariance matrix obtained from the
metabolite concentrations (see “Proving the predictions—
metabolomics science” and Figs. 4 and 5). The entries of
the Jacobian represent the elasticities of reaction rates (via
enzymes or other regulatory principles) to any change of
the metabolite concentrations. On the basis of the Jacobian
solution, one can estimate differences in biochemical
regulation in the system. The Jacobian itself is character-
ized by the following equation [62]:

J ¼ N
@v
@M

; ð2Þ

where N is the stoichiometric matrix of the metabolic
network derived from a genome sequence (see “Ab initio
prediction of metabolic networks from full genome
sequences” and Figs. 1 and 2), v are the rates for each
reaction, and M are the concentrations of each metabolite
in vector notation (for details of Eq. 2, see [62]).
Equations 1 and 2 together provide a conceptual basis for
treating the observed covariance matrix C of metabolite
concentrations (see Fig. 5) as the dynamic molecular
phenotype related to the genotype characterized by the
genomic stoichiometric matrix N (see Figs. 1 and 2).

Consequently, this equation is the systematic description
for the genotype–phenotype relationship.

If the covariance matrix of metabolite concentrations is
measured (see “Proving the predictions–metabolomics sci-
ence” and Figs. 4, 5), Eq. 1 is furthermore the conceptual
basis for the estimation of the Jacobian in the dynamic
genome-scale metabolic network using reverse or inverse
modelling and optimization approaches (for a review of
inverse modelling approaches, see [37]). The Jacobian
entries reflect regulatory properties, the elasticities of the
reaction rates to any change in the metabolite concentrations
as discussed above. Any solution of the Jacobian is therefore
a signature of metabolic—and phenotypic—plasticity of the
corresponding genotype. In Fig. 3 an example of metabolic
plasticity is given. In principal components analysis, the
day–night plasticity trajectory is visualized.

Many limitations, however, have to be overcome to apply
this principle in a routine manner. Metabolomics data cover,
by definition, many different pathways and—in the optimal
case—represent a genome-scale metabolism. However, owing
to the restrictions of analytical methods, only a fraction of all
the metabolites present are typically identified and quantified.
In the following section I will describe the limitations of
classic and advanced analytical methods for metabolomics and
future strategies of how to increase metabolome coverage.

Metabolome coverage has to be improved
by the combination of different analytical procedures,
international cooperation and open source databases
and software

A major limitation of metabolomics science is the vast
amount of detected but structurally not characterized or
putatively classified “features”, a chromatographic peak in
LC-MS analysis, an m/z ratio or complex mass spectrum or
a chemical shift in NMR analysis. This is accompanied by
the habit in literature, especially in the abstract of the full
study, to count detected “features” as metabolites, some-
what hiding the fact that only 30–50% or fewer are indeed
identified chemical structures. Although it is fair to assume
that detected features in a complex mixture of a metabo-
lomics sample are indeed real metabolites, we have to be
aware that analytical procedures also produce many
artefacts. In recent work by Giavalisco et al. [63], a reality
check was performed by using plants fully labelled with
13C and high-accuracy mass spectrometry analysis. On the
basis of this experimental setup, metabolite “features” with
13C incorporation were distinguished from unlabelled 12C
“features” in the analysis, indicating thousands of analytical
artefacts, chemical or electronic noise. From 20,000 to
40,000 detected m/z signals in positive electrospray ioniza-
tion mass spectrometry and negative electrospray ionization

Normalization /
Transformation

Fig. 5 Chemometric workflow for the analysis of ultracomplex
metabolome datasets. A multitude of samples are analysed and the
complete set of samples versus detected, and quantified metabolites
are assembled into a data matrix. Subsequently, the data are analysed
by classic multivariate statistical tools (for more details, see [60]). The
backbone of many of these supervised and unsupervised statistical
tools is the covariance matrix C (or the normalized covariance matrix,
resulting in a correlation matrix) of the metabolite concentrations (for
in-depth analysis of the covariance/correlation matrix of metabolite
concentrations, see [20–22, 58, 59]). For the systematic connection
between C and the stoichiometric matrix of a genome-scale network,
see “A systematic genotype–phenotype equation: connecting metab-
olomics covariance data (C) and genome-scale metabolic network
reconstruction (N)”
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mass spectrometry analysis, about 1,000–3,000 peaks gave
database hits using the exact mass for the generation of a
chemical formula. However, only 1,024 13C/12C m/z pairs
were identified from all the spectra, leading to unambiguous
database hits. The results are more than challenging with
respect to separate chemical artefacts from real metabolites.

Another typical example of howmisleading numbers can be
is typical practice in GC-MS analysis. Although not so sensitive
to contamination as electrospray ionization mass spectrometry,
in a classic untargeted approach 1,000 or even 3,000 (GC-TOF-
MS and GC × GC-TOF-MS analysis, respectively) “features”
or deconvoluted spectra can be detected. From these only a
small fraction can be structurally identified using reference
compound libraries and spectral matching procedures. The
remaining “metabolites” are characterized by spectra which can
be found reproducibly in the GC-MS analyses, however
without unambiguous identification. In summary, the number
of reproducibly identified and quantified metabolites in a batch
of samples is in the range of 100–120, 200 perhaps in a single
sample. Indeed, these numbers are the average identification
rates using the GC-MS analysis demonstrated in many studies.
This low identification rate is mainly due to the inherent
strategy used for metabolite identification from GC-MS data.
After a complex deconvolution process of the gas chromatog-
raphy–electron impact-coupled with mass spectrometry data,
mass spectra are reconstructed and sent to a library of reference
spectra of chemically known compounds [65]. Thus, the
identification rate depends on the size and quality of the
library. There is a strong need to extend and to combine
existing libraries such as the NIST [66], GMD [67] and the
FiehnLib [68] libraries to enable higher identification rates.
One approach would be to complement chemical structures
with chemical synthesis. The whole approach is also
dependent on the quality of the software. Therefore, further
development of algorithms, software tools and databases for
the interpretation of mass spectra are necessary for both GC-
MS and LC-MS analysis [69–72].

Further accuracy is introduced by “targeted” approaches.
Although metabolomics as a classic omics science is by
definition an untargeted analytical discovery procedure to
screen for unexpected effects [21], targeted approaches are
helpful to complement the set of metabolites which cannot
be detected by untargeted analysis, as well as to improve
the accuracy of quantification.

In Fig. 6 the combination of discovery and targeted
metabolomic analysis is shown. Classic discovery methods
include “full scan” analysis of LC-MS instruments such as
liquid chromatography coupled with quadrupole time-of-
flight mass spectrometry [73, 74] and liquid chromatogra-
phy coupled with Fourier transform Orbitrap/Fourier
transform ion cyclotron resonance mass spectrometry [28]
instruments as well as GC-MS instruments, especially
GC-TOF-MS and GC × GC-TOF-MS instruments [20, 25,

51–55]. These measurements give unmatched resolution
and fingerprints of metabolome samples; however, the
simultaneous analysis of thousands of compounds demands
compromises with respect to accuracy of quantification.
Thus, a more targeted approach using classic multiple
reaction monitoring-based triple-quadrupole mass spec-
trometry instruments ensures a very accurate quantification
procedure for both GC-MS and LC-MS [75, 76]. The
combination of both analytical procedures comprises the
iterative strategy depicted in Fig. 6. Discovery phases
enable rapid diagnostic analysis and identification of
putative biomarkers and physiological markers. Moreover,
large libraries of metabolites and putative structures are
generated (Fig. 6). A subsequent or parallel targeted
approach covers interesting compounds and targeted
pathways, thus dissecting the complex system into smaller
parts which can be investigated in more detail. Interest-
ingly, this strategy also coincides with metabolic model-
ling strategies that subdivide metabolic networks which
are too complex into smaller subunits (see “Conclusions
and perspectives”).

The combination of different analytical techniques is of
the utmost importance in the metabolomics field as already
discussed in “Proving the predictions—metabolomics
science” and illustrated in Fig. 4. Many different combina-
tions can be imagined, for instance the combination of
NMR spectroscopy and LC-MS and online coupling of
liquid chromatography with NMR spectroscopy and LC-MS,
especially used for structural elucidation of unknown peaks in
LC-MS [77]. All the developments in analytical procedures
for metabolomics should be accompanied by chemical
synthesis of reference compounds to extend existing libraries.

Fig. 6 Overall strategy combining full-scan mass spectrometry
analyses of metabolites and targeted analysis. Full-scan mass
spectrometry analysis provides a completely unbiased identification
of metabolites and metabolite dynamics. This information is used for
sample classification and biological interpretation and the setting up of
metabolite libraries as well as knowledge bases. Physiological markers
are selectively identified and quantified from complex metabolomics
samples in a high-sample-throughput manner with multiple reaction
monitoring mass spectrometry technology
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These reference compounds can be analysed with the
respective methods to generate libraries compatible with
the respective analytical method. Most important, these
libraries need to be open source, as do the corresponding
databases.

Only the active collaboration of many groups can cope
with these current limitations of metabolomic analysis. This is
already recognized by the research community and is reflected
by the initiatives of the Metabolomics Society (http://www.
metabolomicssociety.org/). An active international collabo-
ration in metabolomics science might be as important as the
development of novel analytical strategies and will exploit
the full potential of this relatively young technology [57].

Conclusions and perspectives

NGSwill enable the systematic and comparative investigation
of the genotype–phenotype relationship. However, before this
relationship reveals its secrets, a comprehensive strategy of
metabolic modelling and metabolic measurements has to be
established. Here, I have presented a systematic and concep-
tual equation connecting the genotype and the molecular
dynamic phenotype. This equation can be exploited in future
for the inverse modelling of the dynamic molecular phenotype
and will be instrumental in the interpretation of the
corresponding genotype. To achieve these accurate predic-
tions of a dynamic metabolism in newly sequenced organ-
isms, the following improvements are essential.

For validating models of metabolism metabolomics will
play a key role; however, metabolome coverage needs to be
enhanced by combining different analytical procedures and
novel technologies. Furthermore, we need to aim for
improved cellular resolution of metabolite profiles.

Because of the complexity of metabolism it can be
helpful to dissect the system into smaller parts and analyse
these discretely. This procedure coincides with targeted
pathway analysis in metabolomics (see also Fig. 6 and
earlier). The complete structure can be reconstructed by
defining biochemical modules and assembling these mod-
ules into large-scale networks. Two recent studies demon-
strated how genotyping and metabolite profiling can
be combined on a robust statistical basis [78, 79]. In the
study by Gieger et al. [79] genome-wide association studies
with the human metabolic phenotype were performed using
a commercial metabolite profiling platform. The observa-
tion from this study was that common genetic polymor-
phisms induce major differentiations in the metabolism of
the individuals. These results strongly support the general
strategy of personalized health care and nutrition in
combination with metabolite profiling and genotyping
[79]. In the study of Chan et al. [78] a large panel of
Arabidopsis plants were genotyped and investigated by
GC-TOF-MS metabolite profiling. One of the conclusions
from this study was that genotype–metabolite associations
are sensitive to environmental fluctuations. This opens up a
completely new avenue for environmental studies combin-
ing rapid NGS genotyping and molecular profiling using
omics technologies such as metabolomics and proteomics.

Finally, the integrative approach combining multilevel
measurements and modelling approaches in the targeted
organism (see Fig. 7) [21] is the conclusive goal. The
combination of transcript, protein and metabolite data is
especially relevant since there is no initial, as yet
readable information from the genome sequence on which
enzyme is active or inactive. However, active or inactive
enzymes will give different biochemical states and will
result in a different stoichiometric matrix N and a different

Fig. 7 Integrative approach
combining genome sequencing,
dynamic modelling and omics
analysis to reveal a mechanistic
and predictive understanding.
EFM elementary flux modes,
FBA flux balance analysis, MCA
metabolic control analysis
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Jacobian J (see earlier). Thus, we need knowledge of the
activity or presence and absence of messenger RNAs and
proteins. Furthermore, metabolic flux analysis is crucial to
reveal active pathways and flux distributions. Techniques
such as metabolic labelling with stable isotopes can be
exploited in combination with genome-scale metabolite
profiling to reveal the in vivo activity of whole pathways
and enzymes [23–25]. In combination with the genome-
scale investigation of the molecular network of an organism
to understand its networking properties, it is as important to
continue classic biochemical studies to elucidate protein
functions on a much smaller scale and case by case.
Integrating this knowledge into the information about the
network dynamics of the molecular components might
finally result in a functional understanding of the system in
relation to the genotype.

In conclusion, NGS in combination with metabolomics
science will be a powerful tool for the investigation of the
genotype-phenotype relationship and the ab initio prediction
of metabolism in newly sequenced organisms.
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