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FIGURE 3.3 Model of proposed interactions in the rhizosphere and in the bulk soil.
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Ca. 20% des photosynthetisch fixierten Kohlenstoffs werden tber die Wurzeln exudiert;
64-86% werden davon durch Mikroorganismen abgebaut.



Whatliesbeneath ... . -

More creatures live in soil than any other

environment on Earth. But what are they all
doing there? Amber Dance reports on the

world's widest biodiversity.

cosystems aren’t green; they are black

and brown, at least in the colour pal-

elte favoursed by Diana Wall. Wall, a seil

ecologist at Colorado State University
in Fort Collins, spends her davs digging into
the world's underground ecosystems. These
beiges, ochres and charcoals reflect a three-
dimensional mosaic of micro-environments,
each with its unique set of inhabitants.

But very little is known about these inhabit-
ants, Understanding soil is a maiter of tising
urgency. A July report from the LS National
Research Council listed sodl quality s the hig-
gest barrier to higher crop vields for farmers in
sub-Saharan Africa and south Asia. And know-
ing what myriad organisins lve in the soil, and
how they interact, is crucial to creating o healthy
ecosystent.

For those scientists
who are willing to crouch
down and dig, the diver-
sity of soil denizens beats
any above-ground sys-
fermn, even that of a tropi- Wim
cal rainforest. A handful
of sail from one spot may howse a very differ
ent communify from soil Just a metre away,
because of variations i the availability of water
or nutrients, For example, the ground under
a decaying plant or animal is a different envi-
ronment from soil lacking such enrichment,
And around plant roots,
specialized organisms e

the world’ soil ecosystems
are, [n one ongoing snady,
ot et published, Wall and
her colleagues scooped
soi] cores from b sites in
Alaska, one in the tundra
and one in the taiga forest,
Although the sites were
only 400 kilometres apart,

recently, Triplett and =
his colleagues ran g
139,000 individual ¥
sequences — maore than 5
other studies have used =

- and caime up with an
estimate of 10,000 to
50,000 species per gram
of s0il”, Complicating
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"My dream is that you take a
DNA sample from the soil, and
then explain what species are
there, and what benefits."

the species living there L
were radically differ
ent: only 18 invertebrate
taxa out of an estimateéd 1,300 appeared inboth
Iocations, “That just blew me away.” says Wall

And that's just looking at invertebrates, not
including microbes. “As far as | know, there
is noenviconment on Earth that is more bio-
logically d:l\-e:rse', per unit
area, than soil.” says Eric

Traplett, a microbiologist
at the University of Flor
ida in Gainesville. Thanks
to faster, cheaper DNA
sequencing, scientisis are
o getting a grip on what
is down there and what thoss organisms might
be doing That information, in turn, could help
improve soil management for agriculture and
forest management for conservation,

At this point, scientists don't even agree on
how many creatures they are looking for. The
first PNA-based esti-
mite of soil microbial

1van der Putten

inhabit the rhizosphere,
a thin laver where roots
and soil organisms inter-
actin myn':ld ways, Large
animals such a5 moles
contribute, changing and
acrating the underground
landscape by lunneiling.
Even a small chump of soil
has a gradient of oxygen
from its edges to the centre,
anud each oxygen concentra-
tion may make the perfect
hahitat for different kinds
of creatures, "It is the mast
incredible zoo,” savs Wall
Take that view to a larger
seatbe, and it b possible (o appre
ciate just how complicated
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biodiversity, published
in 1990, counted sbout
4,000 different bacte
rial genomes per gram
of soil'. Since then,
various studies and
models have pushed
the number up as
high as £30,000 spe-
cles per gram’, down
to 2000 (ref, 3}, and
back up again. Most
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the matter is the fact
that, because so few of
these species have been
described, researchers have to group similar
arganisms within ‘operational taxonomic
units, which correspond roughly but not
precizely to species designations,

Valuable species

Quantifying such diversity illustrates just how
much remains to be discovered, and soil sci-
entists are teaming up to tackle the challenge.
The Tropical Soil Biology and Fertility (TSEF)
Institute, run by the International Center for
Tropical Agriculture and headquartered in
Mairodi, has united more than 300 scientists in
SEVen colintries to survey sofl organisme The
project, which began in 2002, aims to identify
living indicators for fertile or poor soil, and has
already identified some novel organisms that
could be useful to humans.

In the Veracruz rainforest, for instance,
Mexican scientists have discovered Acanu-
lospord, a rvycorrhizal fungus that entwines
with lily roots and provides water and mineral
nutrients, Last spring the rescarchers injected
Acawlospora into the soil of test lily plots in
Benigno Mendoza, a community in Veracruz
where fily bulbs are an important cash crop.
Az a result. this vear's harvest consists of big,
first-guality bulbs that match the yields gained
through using inovganic fertilizer with none
af the downsides of chemical treatments.
Isabelle Burods, a soil ecologist at the Institute
of Ecology in Xalapaand coordinator of the
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TSBF Mexican team, says that the fungus could
eventuully help replace the expensive nitropen
tertilizer and harsh agrochemicals that farmers
apply to their land five or six times a year,
Global soils contain o bounty of unusual
and patentially useful arganisms such as Acau-
fosporg — moee, theoretically, than they should,
Although some species are common, there are
also countless taxa found in vanishingly small
numbers, Many species also seem to be redun
dant, eating the same foods and fulfilling the
s ecosystem jobs, so scientists don't quite
understand why they're there at all. “There is
some debate sbout how many species need to
be present im the soll to make an ecosystem,”
says Wim van der Putten, an ecologist at the
Metherlands Institute of Ecology in Heteren
Heikki Setald, an ecologist at the University

of Helsinki, took on this question with experi-
ments in which he controlled the number of
amimal or microbial speciesin artificial ecosys-
tems, Inone study”, he set up sml microcosms
in grhass jars and added fungal species: only one
in some jars, and up to 43 in others. Diverse
systems decomposed more organic matler
— demonsirated by higher carbon dioxide
production — and produced more nitrogen
compounds in the soil. But that relationship
held true only at the lower end of the spectrum.
Six species were better than one, but 43 weren't
any better than six. “It was kind of a hummer]
Sewdla says, "It would be nice (o tell the andi-
ence that we need all the species to make the
planet green and sustain it”

The explanation lor the wealth of soil
biodiversity, then, remains an open question,
Py the muoltitudinows creatures are simply
adapted for niches that
humans don't yet under-

about what controls the

function in plants”. A =
diversity of soil commu-

nities," says soil ecolopist
Richard Bardgett of Lan-
caster University, UK

Iriplett disagrees.
"I don't think it's a vast
unknown,” he says, “Tthink
there are some dominant i
genera ouf there that we
could learn about pretty
fast” In o followe-up o his
soil biodiversity survey”,
Uriplett and his colleagues
fooumnel thot wp toaround 65%
of the INA samples from soil
microbes fell into known genera, which makes
those genera prime candidates for further study.
For example, Chatinophaga was prevalent in the
four distinet soils tested, from Canacda, Wlimois,
Floride and Brazil. Buta PubMed search for the
genus finds only ten papers on the genus (and
one of those is Tripletts), highlighting the kack
of work that has been donein this area.

"My dream for the Tuture would be that veu
would just take a DNA sample from the soil,
and then explain what species are there, and
what benefits,” van der Putten says. But this
land of quick DNA test 1s years in the future,

Setting microbes to work
For some scientists, just defining the diversity
isn't enough. Triplen, for instance, wants to
alter it. He envisions harnessing the nitrogen-
fixing power of bacteria that form nodules on
the roots of some plants, such as legumes, and
convert nitrogen from the air into a form the
- plants can use, He thinks
he could insert some of

stand, Alternatively,
they could literally be
waiting for a rainy day;
SOITHE DFganisms spring
into action after a storm,
five or other disturbance,
angd so make the ecosys-
tem muore resilient. Or
perhaps those organisms
are truly redundunt, "We
know virtually nothing

e can bise
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the nitrogen-fixing (nif)
genes from the bacteria
into agricultural crops
— which could then col-
lect their own nitrogen
[rom the atmosphere and
eliminate the use of arti-
ficial nitrogen fertilizer. It
has already been shown
that some nif genes can
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nitrogen-fixing plant :
waizld require at least
ten new genes, mak- 2
ing the task difficult, 3
Triplett says, but no
impossible,
Palicy-makers ar
slonwly starting to pa
attention to the prob-
lem of soils, In 2006
the Furopean Union
agreed that soils need
protection from ero-
sion, landslides and
salinisation, but has not
vet finalized the laws that would ensure thas hap-
pens. Same countries, including France, would
prefer to see individusl countries regulate soil.
“I'm pretty confident that the politicians will
swallow the hook sooner orlater)” Seild says.
Avotding that hook comes with a price tag:
one estimate valeed the free services provided
by the worlds wi] hiota at US$L.5 trillion or
more each ves ar”. Soils are also i imporiant as i
carbon .t.mk. soil stockpiles | 500 gigatonnes of
organic carbon, more than Earths atmosphere
and all the plants on the planet, sccording to the
United MNations Food and Agriculture Crgani-
eation, [T soils remain degraded and their many
denizens disappear, the world might lose access
to argnisms that improve crop vields, degrade
toxing, or make useful by-products such as
drugs — before theyre even discovered. =
Amber Dance is a freelance science writer
based in the Les Angeles area, and a former
Mews imtern with Nature.

e 4 G Dinse, F L Appl Fnvran Advorobiol

a0
sk, M. & Danbar, | Schnge 309, 13871300




AT

Bredatony Predatory Saprophagous

, meso and macro-
nematodes microarthropods arthropods

Protozoa ; Fungal Fungal | Saprophagous
feeding feeding | microarthropods
nematodes :

Resource base

| Earthworms |

FIGURE 2.1. Structure of the soil food web. Only major groups of organisms
and well-established linkages are shown. Arrows indicate direction of ener-
gy flow. The microfood-web, litter transformer, and ecosystem engineer cat-
egories are derived from Lavelle et al. (1995). Note that the groups of
organisms represented in this diagram are only those that have been the
most extensively studied; a more complete description of the feeding hab-
its of other, less well-studied fauna, which may nevertheless be ecologically
important (e.g., burrowing vertebrates, bacterialfeeding rotifers and tar-
digrades) is given in Petersen and Luxton (1982).
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Haber-Weiss Reaktion (1+2)
Fenton Reaktion (2) /

1) Fe¥™ +¢0,7 — > Fe¥ + 0O,

2) Fe©” +H,0, — =~ Fe'™ + «OH + +OH



Redox chemistry

OH 0O 9]

e . H e, H'

Q e dE= - i
OH OH Q

hydroquinone semiquinone quinone

> FeMOH + QH, =— >Fe"OH +QH+H"
>Fe"OH+QH =—— >F'OH +Q+H"

> Fe"OH™ =— Fe(H,0)>"

Richter DD et al. (2007 In: The Rhizosphere: An Ecological Perspective,
Cardon ZG, Whitheck IL eds., Academic Press.
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Fig. 18.3 Schematic diagram of clay-humate complex in soil. From Stevenson and
Ardakani®
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Figure 1. Reductant-Antioxidant-Oxidant Interactions in Redox Homeostasis and Signaling.

Nonenzymic components are positioned on a nonlinear scale (right) at their approximate electrochemical potential in volts. In nonquiescent cells under
optimal conditions, large pools of glutathione and ascorbate are maintained in a highly reduced state, and buffer ROS that are continuously produced by
oxidases or by electron transport components, such as FeS centers, semiquinones, or (as depicted) ferredoxin. Other key redox signaling components are
thioredoxins (TRX) and glutaredoxins (GRX), which are reduced by ferredoxin, NADPH, or glutathione. Production of the superoxide anion (OO ") and Hz0»
(HOOH) can be induced or promoted under certain conditions, leading to increased oxidative charge on the reductant-antioxidant system. Reductive
cleavage of H.O., produces the hydroxyl radical (OH), an extremely reactive electron and hydrogen acceptor whose reduction potentially involves
indiscriminate oxidation of cellular components. Excessive production of OH' is avoided by enzymatic processing of H-O, to water by peroxidases or to water
and O, by catalases. Signaling linked to increased availability of ROS may be caused, limited, or mediated by changes in antioxidant capacity (see text).
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DECOMPOSITION:
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Textbox 3 A hydroxyl radical participates in the degradation of lignin

Part of the degradation of lignin is carried out through non-enzymatic
processes. In one of these, the so-ealled hydroxyl radical plays an important
part. Although not all steps in lignin degradation are understood, we mention
the concept here.

When oxygen is reduced, hydrogen peroxide is formed, which in its turn is split
in a reaction. Below we have given a general chemical reaction. So far it is not
known how fungi carry oul the resction,

Fe** + H,0; — Fe** + OH™ + "OH
It seems clear, though, that the highly mobile radical ("OH) is produced by

fungal enzymes, among others, a cellobiase oxidase and laccase. Hydroxyl
radicals may cause an oxidation of lignin to guinines,

Figure 9 Lignin molecule from Norway spruce.
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FIG. 8. Scheme of the quinone redox cycling process in P. eryngii (see Discussion for an explanation). (A) Main reactions involved in ROS
production through BQ, MBQ, and DBQ redox cycling in the absence and presence of Fe**-EDTA (solid and dashed arrows, respectively).
(B) MD redox cycling, showing hydroquinone propagation by O, . Reversible reactions are indicated by double arrows.
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Fig. 1. Catabolic Pathways for the Degradation of Lignin-Derived Aromatic Compounds by §. paucimobilis SYK-6.

SYK-6 is able to grow on various lignin-derived biaryls and monoaryls via the PCA 4,5-cleavage pathway and the multiple 3MGA catabolic
pathways. The percentages are the ratios of the intermonomer linkages in native lignin.'"" Abbreviations: DDVA, 5,5'-dehydrodivanillate; OH-
DDVA, 2.2 3-trihydroxy-3"-methoxy-5,5'-dicarboxybiphenyl; SCVA, 5-carboxyvanillate; PCA, protocatechuate; CHMS, 4-carboxy-2-hydrox-
ymuconate-6-semialdehyde; PDC, 2-pyrone-4.6-dicarboxylate; OMA, 4-oxalomesaconate; CHA, 4-carboxy-4-hydroxy-2-oxoadipate; 3MGA,
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(vii) Current Opinion in Plant Biology

Germination stimulants of parasitic weed seeds. (i) (+)-Strigol, a germination stimulant for Striga spp., has been isolated from root exudates of the false
host cotton, from the true hosts sorghum and maize, and from in-vitro-cultured Menispermum dauricum and Stephania cepharantha. (i) Sorgolactone,
a germination stimulant for Striga spp., has been isolated from the root exudate of the host plant sorghum. (iii) The synthetic germination stimulant
GR24. (iv) Alectrol, a germination stimulant for Striga and Orobanche spp., has been isolated from the root exudates of the hosts cowpea and red
clover. (v) Orobanchol, a germination stimulant for Orobanche spp., has been isolated from root exudate of host red clover. (vi) Dihydroparthenolide,
sesquiterpene lactone that induces the germination of Striga and Orobanche spp. (vii) Dihydrosorgoleone, a germination stimulant of Striga spp.,
has been isolated from the root exudate of the host sorghum [9,13,21,23%]. The structure of (iv) is still under debate [13].
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Arbuskulare Mykorrhiza (Glomeromycota)




Signal fur Mykorrhizapilze
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Figure 1| Hyphal branching of G. margarita induced by lipophilic fractions
from root exudates of L japonicus using the paper disk diffusion

methed. a, Control hypha (70% ethanol in water). b, Hyphal branching
from a secondary hypha upon treatment with the ethyl acetate extracts
(15 pg per disk). Scale bars, 300 pm. ¢, d, Tracings of hyphal branches
directly traced on a Petri dish at 0 h (c) and 24 h (d) after treatment with the
ethyl acetate soluble-neutral fraction (15 pg per disk). Extensive formation
of hyphal branches from secondary and primary hyphae was induced. Scale

bars, 6 mm.



Signal fir Mykorrhizapilze

Fig. 4. Actual micrographs of magnified portions of the branching patterns depicted in Fig. 3. Individual branching clusters are <hown
s that the three dimensional spread of hyphae can be abservad, (A) + 1 branching (11000 dilution. (B} + 2 branching (1100
dilutiont. (C) 3 branching (1:10 dilutiont. (T 4 branching (concentrated exudate fractiont.

Fig. 1 Flavonoid molecules that promote
germination of arbuscular mycorrhizal fungal
spores/hyphal growth (A,C,D), induce nod
genes in rhizobia (B,C,D) or stimulate growth
of rhizabia (A).
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Phytotoxic allelochemicals

O

H,CO OCH;

0
2,6-dimethoxy-p-benzoquinone

OH
OH
OH O
OH
OH
catechin

OH

vanillic acid

0O
OH O

juglone



Hormesis
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Figure 1. Typical dose-response curve. Hormesis consists of a stimulation of the dependent
parameter at low concentration of a phytotoxin. Inhibition threshold is the highest
concentration at which no inhibition is observed. ICs, is the concentration at which 50%
inhibition is observed. This part of the curve often has the most variations in the replicates.
LCIC is the lowest-complete inhibition concentration.

Southam und Ehrlich (1932)
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Einfluss von Apfelluft auf Erbsenkeimlinge

Keimlinge der Erbse in reiner Luft, links, Keimlinge der Erbse in Apfelluft,
rechts. Wasserkultur

iz, 4 Derselbe Versuch wie bei Fig. 3, aber von oben photographiert
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Figure 1. Model showing plausible mechanisms of root exudation and active rhizospheric interactions. The hexagon component in the detoxification process depicts the
low malecular weight toxing produced by bacteria and fungi during the pathagen attack. Plant roots adopt a proton (H' l-pumping mechanism to exclude the phytotoxing
produced by bactaria and fungi, The green, broken arrows depicl pathogen attacks against the plant, The blue, black and red arrows show the respense of the host plant
raot to a pathagen attack. Tha blua, broken arrow reprasents an unknown mode of root exudation and host response against pathogen attack, On the right, the biofilm
panel depicts bacterial communities that are much more resistant to plant-derived antimicrobials than planktonic bacteria are, Abbreviations: PL, plasmalemma-darivad
exudation; Ed, endoplasmic-derived exudation,
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