
Phytoremediation: novel approaches to cleaning up polluted soils
Ute Krämer
Environmental pollution with metals and xenobiotics is a global

problem, and the development of phytoremediation

technologies for the plant-based clean-up of contaminated

soils is therefore of significant interest. Phytoremediation

technologies are currently available for only a small subset of

pollution problems, such as arsenic. Arsenic removal employs

naturally selected hyperaccumulator ferns, which accumulate

very high concentrations of arsenic specifically in above-

ground tissues. Elegant two-gene transgenic approaches have

been designed for the development of mercury or arsenic

phytoremediation technologies. In a plant that naturally

hyperaccumulates zinc in leaves, approximately ten key metal

homeostasis genes are expressed at very high levels. This

outlines the extent of change in gene activities needed in the

engineering of transgenic plants for soil clean-up. Further

analysis and discovery of genes for phytoremediation will

benefit from the recent development of segregating

populations for a genetic analysis of naturally selected metal

hyperaccumulation in plants, and from comprehensive

ionomics data – multi-element concentration profiles from

a large number of Arabidopsis mutants.
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Introduction
Pollution with metals and xenobiotics is a global envir-

onmental problem that has resulted from mining, indus-

trial, agricultural and military practices [1]. Many

pollutants accumulate in the food chain and threaten

human health. In wealthy industrialized countries con-

tamination is often highly localized, and the pressure to

use contaminated land and water for agricultural food

production or for human consumption, respectively, is

minimal. However, soil and water contamination is wide-

spread in Eastern Europe, and is increasingly recognized

as dramatic in large parts of the developing world, pri-

marily in India [2] and China [3].
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Although the avoidance of pollution should certainly be

the primary objective, this principle has not generally

been followed in the past. The clean-up of polluted soils

and waters is very costly, and for many pollutants no

feasible technologies are yet available. Plants possess

highly efficient systems that acquire and concentrate

nutrients as well as numerous metabolic activities, all

of which are ultimately powered by photosynthesis. The

term phytoremediation has been coined for the concept

that plants could be used for low-cost environmental

clean-up and this has attracted considerable attention

in the past decade [4–6]. During the 1980s, the US

Government initiated a large program for the develop-

ment of environmental clean-up technologies (The

Comprehensive Environmental Response, Compensa-

tion, and Liability Act or Superfund), which has acceler-

ated the growth of a new productive research field

worldwide. As a result, researchers have come to learn

that the development of phytoremediation technologies

requires a thorough understanding of the underlying

processes at the genetic, molecular, biochemical, physio-

logical and agronomic levels.

This is a review of recent developments in basic and

applied research relevant for the plant-based clean-up of

soils contaminated with trace metals and metalloids.

Available phytoremediation approaches
and technologies
There are two distinct strategies in soil phytoremediation,

phytostabilization and phytoextraction [5]. The former is

used to provide a cover of vegetation for a moderately to

heavily contaminated site, thus preventing wind and

water erosion. Plants suitable for phytostabilization

develop an extensive root system, provide good soil cover,

possess tolerance to the contaminant metals, and ideally

immobilize the contaminants in the rhizosphere. Phytost-

abilization is often performed using species from plant

communities occurring on local contaminated sites.

The most effective but also technically the most difficult

phytoremediation strategy is phytoextraction. It involves

the cultivation of tolerant plants that concentrate soil

contaminants in their above-ground tissues. At the end

of the growth period, plant biomass is harvested, dried or

incinerated, and the contaminant-enriched material is

deposited in a special dump or added into a smelter.

The energy gained from burning of the biomass could

support the profitability of the technology, if the resultant

fumes can be cleaned appropriately. For phytoextraction

to be worthwhile, the dry biomass or the ash derived from

above ground tissues of a phytoremediator crop should
Current Opinion in Biotechnology 2005, 16:133–141
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Figure 1
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Chemical reactions in transgenic phytoremediation. (a) The

detoxification and volatilization of organomercurials. (b) Arsenate

detoxification and immobilization. (c) Selenite detoxification. Gene

names are explained in the text. AdoMet, S-adenosylmethionine;

GSH, glutathione (reduced); GS-SG, oxidized glutathione; Me, methyl;

SMM, S-methylmethionine.
contain substantially higher concentrations of the con-

taminant than the polluted soil. To achieve this, several

bottleneck processes limiting trace element accumulation

in plants have to be resolved, including the mobilization

of poorly available contaminant trace elements in the soil,

root uptake, symplastic mobility and xylem loading, as

well as detoxification and storage inside the shoot [7��].

Metal hyperaccumulator plants are naturally capable of

accumulating trace elements, primarily Ni, Zn, Cd, As or

Se, in their above-ground tissues, without developing any

toxicity symptoms [8]. The concentrations of these ele-

ments in dry leaf biomass are usually up to 100-fold higher

than the concentrations in the soil [4]. Characteristically,

the shoot:root ratio of concentrations of the hyperaccu-

mulated trace element is above unity [9,10��,11��].
Although metal hyperaccumulator plants therefore

appear to have ideal properties for phytoextraction, most

of these plants produce little biomass and are thus pri-

marily used as model organisms for research purposes.

The biomass production of a few hyperaccumulator

plants has been judged sufficient for phytomining (the

use of plants to extract and concentrate inorganic sub-

stances of economic value from soils) [12] or phytoreme-

diation; for example, the brake fern Pteris vittata
accumulated up to 7500 mg g�1 As on a contaminated

site [13], without showing toxicity symptoms. One fern

cultivar is available commercially for As phytoextraction

(http://www.edenspace.com/index.html), and promising

field trials have been conducted [14�]. Chelator-assisted

phytoremediation is also available commercially. This

approach is based on the application of chelators such

as EDTA (ethylenediamine tetraacetate) to solubilize

poorly available metals (e.g. lead) in the soil, followed

by the largely passive accumulation of metal complexes in

plant shoots with the transpiration stream [5].

Because of their extensive root system, their high biomass

and low-input cultivation, trees are attractive phytoreme-

diators. Metal accumulation is generally poor, however,

especially in the wood. Recent genome sequencing, the

development of genomics tools, and the ease of genetic

transformation of poplar might open up new avenues for

the use of trees in phytoremediation [7��].

Breakthroughs in phytoremediation: novel
transgenic approaches
A variant of phytoextraction is phytovolatilization,

whereby the contaminant is not primarily accumulated

in above-ground tissues, but is instead transformed by the

plant into a volatile compound that is released into the

atmosphere. In some groundbreaking work, the detox-

ification of highly toxic organomercurial compounds and

subsequent volatilization of elemental mercury were

successfully engineered in plants. For this purpose, mod-

ified bacterial merA and merB genes were introduced into

several plant species including Arabidopsis, tobacco and
Current Opinion in Biotechnology 2005, 16:133–141
poplar [15,16]. The MerB protein is an organomercurial

lyase that catalyzes the removal of Hg(II) from organic

mercury compounds (e.g. methylmercury; Figure 1a).

The MerA protein, a mercuric ion reductase, reduces

Hg(II) to the volatile elemental form Hg(0) using

NADPH as an electron donor. Transgenic plants trans-

formed with both merA and merB were remarkably toler-

ant to organic mercury compounds and Hg(II). With

respect to soil clean-up, the approach is still limited by

a generally very low solubility of mercurial compounds in

the soil solution. The reaction catalyzed by MerB limited

the performance of the plants transformed with merA and

merB. Enhanced specific in planta MerB activities were

achieved by targeting the MerB protein to the cell wall or

to the endoplasmatic reticulum, where the apolar orga-

nomercurials are believed to accumulate [17]. Targeting

the MerB enzyme to the cell wall is an example for the

transfer of a phytoremediation-active compound to the
www.sciencedirect.com
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extracytoplasmic surface of plant cells. Similar ap-

proaches may help to solve the problem of low uptake

rates of contaminants by plant cells, which still limits

all emerging phytoextraction technologies. In order for

transgenic phytoremediation to become more widely

accepted, the development and implementation of bio-

logical encapsulation strategies will be of high value.

Biological encapsulation is a term to describe procedures

that dramatically decrease the probability of the spread of

a transgene from a genetically modified crop to natural

plant populations, for example by introducing the trans-

gene into the chloroplast genome instead of the nuclear

genome [18].

A second example further illustrates how well-conceived

plant engineering strategies have been designed based on

microbial detoxification pathways. In plants, As is taken

up as arsenate (AsO4
3�) by phosphate uptake systems

[19]. Arabidopsis plants were generated that overexpress

an Escherichia coli arsenate reductase ArsC (Figure 1b),

which reduces arsenate to arsenite (AsO3
3�) using glu-

tathione as the electron donor [20��]. Because arsenite

possesses a high affinity for thiol groups and is thus likely

to be bound and immobilized inside the cells where it is

formed, the arsC gene was introduced downstream of the

soybean SRS1 (small subunit of Rubisco 1) promoter,

which confers shoot-specific, light-induced expression.

The rationale behind this was to keep As immobilization

in the root to a minimum in order not to interfere with the

translocation of As to the shoot. The resulting transgenic

plants were hypersensitive to arsenate, which was attrib-

uted to the depletion of the glutathione pool and to the

high affinity of arsenite for binding to protein thiol groups.

Arabidopsis thaliana plants transformed with arsC and an

additional second transgene, which encoded the E. coli
g-glutamylcysteine synthetase (g-ECS) expressed under

a constitutive actin (ACT2) promoter, were more tolerant

to arsenate than the wild-type or single g-ECS transfor-

mants. Double-transformant lines accumulated up to

3.4-fold higher shoot As concentrations than wild-type
Table 1

Summary of genes introduced into plants and the effects of their exp

Gene(s) Product/function Source Target

arsC Arsenate reductase E. coli Tobacco

arsC and

g-ECS

Arsenate reductase

and g-EC synthetase

E. coli Arabidopsis

E. coli

SMTA Selenocysteine

Methyltransferase

A. bisulcatus Arabidopsis

SMTA Selenocysteine

methyltransferase

A. bisulcatus Brassica juncea

YCF1 Vacuolar sequestration

of GSH–conjugates

S. cerevisiae Arabidopsis

HMA4 Cellular metal efflux A. thaIiana Arabidopsis

aThe ‘maximum effect’ is the maximum concentration increase observed i

transgene. For a summary of earlier data see [6]. bValue likely to refer to c

dimethyl diselenide (MeSe-SeMe). dData were from a single transformant

www.sciencedirect.com
plants on agarose-based media (Table 1). The efficiency

of this approach in As phytoextraction remains to be

tested on contaminated soils. The expression of ArsC

in plants also increases Cd tolerance and accumulation

[21��].

Alternatively, strategies to engineer plants for phytoex-

traction can be designed based on naturally selected

metal hyperaccumulation mechanisms. Transgenic A.
thaliana plants expressing a selenocysteine methyltrans-

ferase (SMTA) isolated from the Se hyperaccumulator

Astragalus bisulcatus accumulated methylselenocysteine

and contained up to eightfold higher Se concentrations

than wild-type plants, when grown on a soil supplemen-

ted with selenite (SeO3
2�; see Figure 1c and Table 1)

[22�]. However, the transgene did not confer tolerance to

or enhanced accumulation of Se when the metalloid was

provided in the predominant chemical form present in

soils, selenate (SeO4
2�). The next important step will be

to enhance the rate-limiting conversion of selenate to

selenite by the plants. In Brassica juncea seedlings expres-

sing the same SMTA protein, another research group

observed slight selenate tolerance and an approximately

fivefold increase in Se accumulation when plants were

exposed to selenate [23�]. They report slightly enhanced

dimethyl diselenide volatilization from mature transgenic

B. juncea plants exposed to selenite or selenate.

Novel insights from basic research
In the past few years, substantial progress has been made

in elucidating the mechanistic basis of the homeostasis

and detoxification of metals and metalloids in plants.

Insights into the mechanisms of naturally selected plant

trace element tolerance and hyperaccumulation have also

been gained. On the basis of this work, improved engi-

neering strategies can now be devised. For example, the

current transgenic approach in As phytoremediation

(described above) could be combined with the expression

of phosphate transporters, which appear to be the major

uptake pathway for the chemically similar arsenate anions
ression on trace element accumulation in shoots.

Expression Maximum effecta Root medium

Shoot 1.4-fold Cd Hydroponic

Shoot and

constitutive

Threefold As from AsO4
3� Agar

Constitutive Eightfold Se from SeO3
2� Amended soil

Constitutive bFivefold from SeO4
2�

cVolatilization

Agar

Sand

Constitutive 1.4-fold Pb, 1.5-fold Cd Gravel/hydroponic

Constitutive dTwofold Zn, 1.4-fold Cd Hydroponic

n shoot dry biomass, relative to control plants not expressing the

oncentration in whole seedlings. cThe volatilized compound is

line only.
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in the roots. There may even be the possibility to isolate

mutant or variant phosphate uptake systems with an

enhanced affinity for arsenate. The root systems of the

As hyperaccumulating fern P. vittata possess a higher

affinity for arsenate uptake than those of a related non-

accumulator fern species [24�]. A suppression of endo-

genous arsenate reduction in roots may serve to enhance

root-to-shoot translocation of As [20��,25], and the over-

expression of a glutathione–conjugate pump in the leaves

could increase the capacity for detoxification of As(III)–

glutathione complexes in the vacuole. Finally, phytoche-

latins [26] — metal-chelating molecules of the general

formula (g-GluCys)nGly (where n = 2 to 11) synthesized

by the ubiquitous plant enzyme phytochelatin synthase

[27–29] — are known to contribute to As detoxification in

As-sensitive [30], As-tolerant [31], and As hyperaccumu-

lator plants [32�,33�]. It is interesting to note that the

ability to synthesize phytochelatins reduces the extent of

cellular As tolerance conferred by expression of the

cellular arsenite efflux transporter ScAcr3p in Schizosac-
charomyces pombe [34�].

Genomics approaches are increasingly being employed in

phytoremediation-related research. Recently, powerful

‘ionomics’ screens have been initiated [35��,36]. These

involve unbiased multi-element profiling in A. thaliana
mutant populations to identify mutants with altered ele-

mental composition of rosette leaves. These and similar

screens will serve to identify novel genes with a key

role in metal accumulation. Using A. thaliana oligonucl-

eotide microarrays, cross-species transcript profiling was

employed to compare A. thaliana and a closely related Zn-

and Cd-tolerant Zn hyperaccumulating accession of Ara-
bidopsis halleri [10��,11��]. This study confirmed on a

genome-wide scale what had been observed earlier for

single genes in several different hyperaccumulator spe-

cies [37–39,40��,41�]: several metal homeostasis genes are

constitutively expressed at very high levels in metal

hyperaccumulators, when compared with closely related

non-accumulators. In A. halleri, these include genes

encoding several membrane transporter proteins of the

ZRT-IRT-related protein (ZIP) family (zinc-regulated

transporter, iron-regulated transporter) [42], which are

likely to mediate zinc influx into the cytoplasm, and

two isoforms of the enzyme nicotianamine synthase.

These genes are expressed at low levels or only upregu-

lated under conditions of zinc deficiency in A. thaliana.

Other genes found to be constitutively expressed at high

levels in the hyperaccumulator species A. halleri encode

membrane transport proteins of the HMA (heavy metal

P-type ATPase) family of P1B-type metal ATPases, which

are potentially involved in metal export into the apoplast

for metal detoxification or for root-to-shoot metal trans-

location in the xylem. Finally, the transcript analyses

implicated a metal tolerance protein 1 (MTP1)-like pro-

tein of the so-called cation diffusion facilitator family,

which contributes to the sequestration of Zn ions primar-
Current Opinion in Biotechnology 2005, 16:133–141
ily in leaf vacuoles (see below). Global transcript analyses

of metal hyperaccumulation and associated tolerance in A.
halleri are thus consistent with an involvement of several

major genes, as supported by preliminary genetic analyses

[43�,44,45�]. Collating the available data shows that in

several cases homologues of the same A. thaliana gene are

overexpressed in various hyperaccumulator species: A.
halleri (hyperaccumulating primarily Zn), Thlaspi caeru-
lescens (Zn), a different accession of T. caerulescens
(Cd, Zn), and Thlaspi goesingense (Ni). Together with

site-directed and random mutagenesis approaches, the

comparison of amino acid sequences of metal transporters

from several hyperaccumulator species might be a starting

point in the identification of determinants of differential

metal specificities [46]. For example, a sequence compar-

ison of the IRT1 protein from A. thaliana and related

proteins from T. caerulescens accessions differing in their

Cd accumulation might help to identify regions and

amino acids that specify Cd transport or exclusion [47�].

Recent work (see also above) suggests a role for nicotia-

namine as a chelator conferring cellular tolerance to Ni

[48�] and Zn [10��,11��] in a Zn hyperaccumulating

accession of T. caerulescens and in A. halleri, respectively.

Nicotianamine synthase catalyzes the biosynthesis of

nicotianamine from three molecules of S-adenosyl-

methionine, releasing three molecules of S-methylade-

nosine as a by-product [49–51]. Nicotianamine is a non-

proteinogenic amino acid metal chelator that is ubiqui-

tous in higher plants. Each nicotianamine molecule is

able to chelate a metal ion with high affinity via three

carboxylate groups and the free electron pairs of a max-

imum of three amino groups [52]. In the past, nicotiana-

mine was identified as a chelator essential for the

intercellular and long-distance transport of Fe, Zn and

Cu in plants. It is also an intermediate in the biosynthesis

of phytosiderophores, which participate in the mobiliza-

tion of rhizosphere Fe(III) by roots of graminaceous

plants [53].

As the molecular inventory of metal hyperaccumulation is

gradually reaching completion, it is vital to determine the

site of action and the precise function of the implicated

proteins. Researchers have begun to generate the tools

required for a genetic analysis of metal hyperaccumula-

tion. For example, an F2 and a backcross 1 population

segregating for metal tolerance and hyperaccumulation,

respectively, have been generated by crossing A. halleri
with the closely related non-tolerant non-accumulating

Arabidopsis lyrata ssp. petraea [44,45�]. One such popula-

tion has been used to demonstrate that two genes of A.
halleri, which are closely related to the A. thaliana MTP1
gene and encode almost identical membrane transport

proteins capable of transporting Zn2+ into the vacuole

(see above), co-segregate with zinc tolerance [40��]. This

highlights the major importance of the central vacuole of

plant cells as a compartment for metal detoxification
www.sciencedirect.com
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Figure 2
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Model of Cd partitioning. (a) Cd partitioning in YCF1-overexpressing

transgenic A. thaliana. Cd2+ enters plant cells primarily through

non-specific transport systems (not shown). Inside the cell a fraction of

Cd(II) binds to thiol groups of glutathione (GSH) molecules as ligands.

The complex is a substrate for YCF1. In root vacuolar membranes, YCF1

partitions Cd(II) into the vacuole and thus generates a Cd(II) sink in root

cells. This may restrict the amount of Cd(II) that is available for

movement into the shoot (thin arrow). Consequently, Cd(II) influx into

leaf cells is reduced, and vacuoles in the shoot may not be the primary

Cd(II) sink in the transgenic plants. (b) Cd partitioning in plants exhibiting

naturally selected Cd hyperaccumulation (e.g. T. caerulescens;

accession Ganges). In root cells of Cd hyperaccumulator plants, Cd(II)

transport into the vacuole is likely to be suppressed. Instead, Cd(II) is

likely to be exported by the metal pump HMA4, and possibly other

transporters, for transport into the shoot via the xylem. A larger

proportion of Cd(II) than in (a) is translocated from the root into the

shoot (thick arrow). In leaf cells, efficient transporters exist for the

sequestration of Cd(II) in the vacuoles, thus generating a strong sink

for Cd(II) in the central vacuoles of leaf cells.
[54,55] and as a compartment that can be used to generate

artificial metal sinks (see below and Figure 2). Segregat-

ing populations have also been obtained by crossing

accessions of the hyperaccumulator T. caerulescens dif-

fering in Zn, Ni and Cd tolerance and accumulation

[43�,56,57]. Finally, metal hyperaccumulator species have

been evaluated systematically with respect to their suit-

ability for molecular genetic approaches [58��,59].

The characterization of single genes involved in metal

homeostasis has yielded important insights into their

functions and potential use in phytoremediation [60�].
Among these, some of the most notable studies address

the high-affinity iron uptake system IRT1 of A. thaliana
[46,61,62��,63,64] and the two P1B-type Zn2+/Cd2+-

ATPases HMA2 and HMA4 [41�,65,66�,67,68], which

function in the export of Zn2+ and Cd2+ from cells in

root-to-shoot metal transport.

Important insights have been gained from transgenic

plants overexpressing microbial and plant metal home-
www.sciencedirect.com
ostasis proteins. Transgenic A. thaliana plants were gen-

erated that overexpress the yeast YCF1 (yeast cadmium

factor 1 [69]) membrane transport protein of the ATP-

binding cassette (ABC) transporter family [70��]. This

protein is capable of transporting Cd–glutathione conju-

gates into the vacuole of yeast and plant cells. Transgenic

plants were less metal-sensitive and accumulated up to

1.5-fold and 1.4-fold higher shoot concentrations of Cd

and Pb, respectively (Table 1; Figure 2). The overexpres-

sion of A. thaliana HMA4 (see above) was reported to

increase the tolerance of transgenic plants to Cd and Zn,

and leaf Zn and Cd concentrations were twofold and 1.4-

fold higher than in the wild type, respectively (Table 1)

[66�]. All of these transgenic plants remain to be tested for

shoot metal accumulation on metal-contaminated soils.

Lee et al. [71��] successfully expressed a bacterial homo-

logue of AtHMA4, the E. coli ZntA protein, in A. thaliana.

The protein was shown to localize to the plasma mem-

brane of A. thaliana cells. The transgenic lines were more

tolerant to Pb and Cd than wild-type plants, but accu-

mulated less Cd and Pb in the leaves [71��]. In addition to

increasing the rate of metal removal from the cytoplasm,

metal tolerance can also be generated by producing

metal-chelating molecules. One low molecular weight

chelator implicated in Ni hyperaccumulation and toler-

ance is free histidine [9,72]. Expression in A. thaliana of a

bacterial gene encoding ATP phosphoribosyl transferase,

which catalyzes the rate-limiting, first committed step in

histidine biosynthesis, increased free histidine levels and

conferred enhanced Ni tolerance [73�], but did not

increase leaf Ni accumulation. Reported results on the

overexpression of phytochelatin synthase in plants with

the aim to overproduce metal chelating phytochelatins

have so far been contradictory [74,75]. Although phyto-

chelatins are necessary for basal metal tolerance in most

plants [76], inhibitor studies suggest that phytochelatins

are not required in naturally selected Zn and Cd hyper-

accumulation and hypertolerance [77,78�].

Conclusions
As far as can be inferred from the published data, the

performance of transgenic plants generated so far is not

yet sufficient for commercial phytoextraction (Table 1).

Improvements could be made by using tissue- or cell-

type-specific promoters. In roots, it is desirable to main-

tain trace element contaminants in a mobile chemical

form, and their export into the xylem should be maximized

(Figure 2). It is important to avoid the generation of metal

sinks in the roots and to create sinks for metals and

metalloids, either by tight binding or by sequestration,

in the above-ground tissues. The engineering of transgenic

plants suitable for phytoextraction will probably require a

change in the expression levels of several genes. Beyond a

certain number of genes, this could render transgenic

approaches impractical, unless regulatory factors can be

identified that control several target genes in concert.

Enhancing contaminant mobilization and uptake into
Current Opinion in Biotechnology 2005, 16:133–141
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the roots will require more attention in the future, espe-

cially with respect to the competition between nutrient

ions and target trace element contaminant ions.

Metal and metalloid contaminations seriously threaten

the health of a large number of people worldwide and

require novel, low-cost, flexible and effective phytore-

mediation technologies. Despite considerable and rapid

progress in recent years, a lack of basic understanding of

metal handling in plants is still limiting the design of

phytoremediation approaches. This can only be overcome

by concerted multilateral and more widespread national

research programs, as well as through facilitated access to

biological resources such as seeds and an open exchange

of information, tools and materials.

Update
Kobae et al. [79] have shown that the A. thaliana T-DNA

insertion line mtp1-1, which is disrupted in MTP1 expres-

sion, is hypersensitive to Zn. This suggests that MTP1

contributes to basal Zn tolerance in A. thaliana.
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9. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM,
Smith JAC: Free histidine as a metal chelator in plants that
accumulate nickel. Nature 1996, 379:635-638.
Current Opinion in Biotechnology 2005, 16:133–141
10.
��

Becher M, Talke IN, Krall L, Krämer U: Cross-species microarray
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