Introduction into stable isotopes

Stable isotopes in ecology and ecosystem research

Wolfgang Wanek

University of Vienna Department of Chemical Ecology & Ecosystem Research

IRMS Delta^{PLUS} (Finnigan MAT)

Elements and isotopes

Definition of a chemical element

Atomic number 6 p, 6 $e^- \rightarrow {}_6C$

Definition of an isotope

Mass number 6 p -> ₆C 6 n -> ¹²C 7 n -> ¹³C 8 n -> ¹⁴C

Periodic table of elements

232.04

231.04

238.03

[244]

[247]

[247]

[251]

[252]

[259]

[258]

Wanek Tracing Isotope Stable

2009

Karlsruher` chart of nuclides

Chart of nuclides, lower section

Wanek 2009

Stable Isotope Tracing

Stable isotopes and radioisotopes

- → Half-lifes of "stable" isotopes are >10⁹ years
- ⇒ The stability of atomic nuclei depends on the ratio p : n.
- Unstable isotopes undergo nuclear
 transformations to form more stable
 daughter nuclei (isotopes) and thereby emit
 characteristic nuclear radiation

Stable isotopes in ecology

Table 1.1. Average Terrestrial Abundances of the Stable Isotopes of Major Elements of Interest in Ecological Studies

Element	Isotope	Abundance (%
Hydrogen	'H	99.985
	² H	0.015
Carbon	¹² C	98.89
	¹³ C	1.11
Nitrogen	/ ¹⁴ N	99.63
	¹⁵ N	0.37
Oxvgen	1 ^ O	99.759
o A j Bo li	' ⁷ O	0.037
	۱۳Ô	0.204
Magnesium"	²⁴ Mg	78.70
	²⁵ Mg	10.13
	²⁶ Mg	11.17
Silicon"	^{2*} Si	92.21
	²⁹ Si	4.70
	³⁰ Si	3.09
Sulfur	³² S	95.00
	³³ S	0.76
	³⁴ S	4.22
•	.MS	0.014

Wanek 2009 Stable Isotope Tracing

Natural isotope abundances

Isotopic composition is expressed relative to a standard

$$\delta \ [\%_{o}] = \left(\frac{\mathsf{R}_{\mathsf{sample}}}{\mathsf{R}_{\mathsf{standard}}} - 1\right) \times 1000$$

Example: $\delta^{15}\mathsf{N} \ [\%_{o}] = \left(\frac{(^{15}\mathsf{N}/^{14}\mathsf{N})_{\mathsf{sample}}}{(^{15}\mathsf{N}/^{14}\mathsf{N})_{\mathsf{std}}} - 1\right) \times 1000$

 δ notation is unitless (‰ only indicates multiplication)

Isotope Ratio

 $R = \frac{(amount of heavy isotope)}{}$

(amount of light isotopes)

Example: $R^{15}N = ({}^{15}N / {}^{14}N)$

Delta notation

Natural isotope abundances are given in delta notation which expresses the relative deviation of the isotope ratio of a sample from that of a international standard (‰)

Isotope abundances in tracer studies

Atom% = (amount of heavy isotope) (amount of all isotopes)

Example: atom%
$${}^{15}N = \frac{{}^{15}N}{({}^{14}N + {}^{15}N)} \times 100$$

APE = atom percent excess

 $APE = at\%_{sample} - at\%_{control}$

(controls: natural abundance or non-treated samples)

Isotopes of light elements

Elem	. Isotope	Delta	Reference material
Н	¹ H, ² H (D)	δD	SMOW
С	¹² C, ¹³ C	$\delta^{13} C$	V-PDB
N	¹⁴ N, ¹⁵ N	δ^{15} N	at-air
0	¹⁶ O, ¹⁷ O, ¹⁸ O	$\delta^{18} O$	SMOW
S	³² S, ³³ S, ³⁴ S, ³⁶ S	$\delta^{34}S$	CD

SMOW	Standard Mean Ocean Water
V-PDB	Vienna Pee Dee Belemnite
at-air	N_2 in atmospheric air
CDT	Canon Diablo Meteorite

International reference materials

z.B. Vienna Pee Dee Belemnite

Certified reference materials are available from IAEA (International Atomic Energy Agency) or NIST (National Institute of Standards)

Figure 11-97 Evolution of shells of the Coleoidea. (After Shrock and Twenhofel.)

Abundances of isotopes

	Heavy isotope				
	¹⁵ N	² H ^a	О ^я	¹³ C	³⁴ S
Standard	N ₂ air	SMOW	SMOW	PDB.	CD ^d
Mean fractional abundance ^e	0.00366	0.00015	0.00204	0.0111	0.0422
1 δ as fractional change of isotopic composition	4 × 10 ⁻⁶ 0.00036 a	1·5 × 10 ⁻⁷ 1t% ¹⁵ N	2×10^{-6}	1·1 × 10 ⁻⁵ 0.0011 at	4·2 × 10 ^{−s} % ¹³ C
Usually observed ranges of δ values in nature (‰)	-49 to +49	-350 to +200	-30 to +30	-40 to 0	-45 to +40
Observed range as fractional change of isotopic composition	3.9 × 10 ⁻⁴	8.2×10^{-5}	1.2×10^{-4}	$4 \cdot 4 \times 10^{-4}$	3.6×10^{-3}

"The heavy isotope of hydrogen is deuterium (D); the common usage for natural abundance is δD . "SMOW, standard mean ocean water; "PDB, Pee Dee Belemnite (limestone); none of this remains, and secondary standards are used; "CD, Canyon Diablo Meteorite. "Fraction of the total element occurring as the heavy isotope.

Comparison of notations

	R ¹⁵ N	atom% ¹⁵ N	δ ¹⁵ Ν [‰]
Plant	0.003680	0.36662	1.0
Soil	0.003685	0.36717	2.5
Herbivore	0.003691	0.36779	4.2

Figure 1.6. Observed ranges of nitrogen isotope ratios from various substances.

Controls of isotopic composition

Isotope fractionation

Isotope fractionation may occur in a reaction sequence or between a diet and an organism.

Isotope fractionation in life sciences is commonly expressed as **isotope discrimination** Δ (large delta, equivalent to enrichment factor ε)

$$\Delta = \delta_{\text{Substrate}} - \delta_{\text{Product}} = 1000 * (\alpha - 1)$$
, given in ‰

Discrimination is related to the fractionation factor α . $\alpha_{S/P} = R_A / R_B$; or $\alpha = \Delta / 1000 + 1$

Example: $\alpha = 1.002 \sim \Delta = 2\%$ product isotopically depleted in heavier isotope by 2‰ compared to the substrate

2009 Wanek Tracing Isotope Stable

Potential energy differences in bonds

Isotopically heavier atoms are more strongly bonded and have lower zero point energies (ZPE) than lighter atoms, due to lower vibrational energy \rightarrow to break such a bond more energy is required

Figure 2.2. The interatomic distance - potential energy relationship for stable hydrogen isotopes of a molecule. Higher zero point energies (ZPE) result in molecules being less stable. Modified from O'Neil (1986).

Kinetic isotope effects

substrate A - product B

$$\mathsf{light}_{A} \Rightarrow \mathsf{light}_{B}$$

"irreversible", chemical of physical transition between A and B, unidirectional $heavy A \Rightarrow heavy B$

$\alpha_{kin} = {}^{light}k / {}^{heavy}k$, most frequently > 1.0

Isotopically heavier molecules react slower than isotopically lighter molecules. KIEs are not additive. Higher **binding energies** of molecules of greater mass, More energy necessary to break bonds of isotopically heavier molecules.

Kinetic isotope effects

$$\alpha_{kin} = {}^{light}k / {}^{heavy}k$$

Diffusion, evaporation and enzymatic reactions frequently discriminate against the isotopically heavier substrate/isotope.

Isotopic depletion of the product by

Nitrate reductase	$\Delta = 15\%$ ($\alpha = 1.015$)
Rubisco	$\Delta = 28\%$
Ammonium oxidation	$\Delta = 60\%$ o
PEP carboxylase	$\Delta = 2\%$
CO_2 diffusion	$\Delta = 4\%_{00}$

Fractionation in a closed system

Raleigh fractionation

- + fractionation $\alpha > 1$ product depleted
- + substrate becomes increasingly isotopically enriched

cumulative product approaches isotopic composition of initial substrate

- + if all substrate is consumed: δ product = δ original substrate no apparent discrimination!!
- + Only in semi-closed or closed systems i.e. dependent on substrate supply:demand or substrate pool size

2009

Integral of the kinetic IEs of back and forward reaction.

Occur during isotope exchange reactions.

Finally isotopes are **unequally distributed** in isotopic equilibrium between two phases, states of aggregation or molecules.

Equilibrium isotope effects

Higher **activation energy** needed to dissociate isotopically heavier molecules. Additive. Temperature-dependent: zero potential energies diminish and therefore equilibrium isotope effects decrease

Rules of thumb - enrichment of the heavier isotope in

- compounds of higher oxidation state e.g. sulphate > sulfide
- compounds of greater **density** of aggregation state
 e.g. snow > water > moisture
- compounds of greater molecular mass
 e.g. carbonate > bicarbonate > CO₂

e.g. ¹⁵N enrichment of NH_4^+ relative to NH_3 ($\Delta = -25\%$), NH_3 hydratation ¹³C enrichment of HCO_3^- relative to CO_2 ($\Delta = -8\%$), CO_2 Hydratation

Mass differences in molecules

e.g. Glucose ${}^{12}C_{6}{}^{1}H_{12}{}^{16}O_{6}$ (180) $\Rightarrow {}^{13}C^{12}C_{5}{}^{1}H_{12}{}^{16}O_{6}$ (181) Mass difference 1/181 Glucose is not volatile. Derivatisation – extra-C!

e.g. Carbon dioxide ${}^{12}C^{16}O_2 (44) \implies {}^{13}C^{16}O_2 (45)$ Mass difference 1/45

Therefore: sample preparation – combustion of samples to simple gases before isotope ratios are measured

Isotope analysis

Gas isotope analysis by gas isotope ratio mass spectrometry (IRMS)

- + Small molecular weight gases to detect differences in isotopic abundance and mass
- + Ionisation and separation of gases by mass:charge ratio
- + No direct absolute measurement of isotopic abundances but against reference materials/ gases to detect the small differences in isotopic abundances

Dual-Inlet IRMS

- Off-line preparation of gases (C to CO₂, N to N₂)
- Repeated measurements of sample versus standard gas
- Highest precision
- Low sample throughput due to laborious off-line sample preparation (<10/day)

Wanek 2009

Continuous-flow IRMS

- E.g. coupling of an elemental analyzer to IRMS via interface
- High temperature conversion of (in)organic matter to CO₂ and N₂
- He as carrier gas
- High throughput (>100/day)
- Lower precision

Wanek 2009

Stable Isotope Tracing

Gas separation

- Gas separation by molecular sieves i.e. crystalline metal aluminosilicates having a three-dimensional interconnecting network of silica and alumina tetrahedra. Uniform cavities selectively adsorb molecules of a specific size.
- + 4- to 8-Å sieves are normally used in gas phase applications.

Molecular sieve 4Å

Fig.2a Flow chart ConFlo

Interface EA – IRMS

IRMS

Gas ionisation by electron impact

N ₂	>	N_2^+	m/z	28
_		_		29
				30
		N+	m/z	14
CO_2	>	CO_{2}^{+}	m/z	44
2		L		45
				46
		0 ₂ +	m/z	32
		CŌ+	m/z	28
		C+	m/z	12

Ion detection

Multielement Multicollector – MEMCO

Measurement of ion flux through neutralisation of gas cations in the detector; cup 1-3 (m/z 28-30), 4-6 (m/z 44-46), 3/4 (m/z 62/64)

Trace gas analysis - Gas Bench II

- On-line isotope analysis in headspace samples, e.g. water equilibration, carbonates, atmospheric gases (CO₂, CH₄, N₂O, N₂, H₂)
- Multiple loop injection for enhanced precision
- GC separation of gas mixtures
- Cryogenic focusing of trace gases from large air volumes prior to GC separation

Gas Bench II – CO₂ measurement

GasBench Scheme

Reference Gases

Gas Bench II – Water equilibration

Screw cap

Platinum catalyst

- $H_2O:CO_2$ equilibration for $\delta^{18}O$
- $H_2O:H_2$ equilibration for δ^2H (δD):

 $H_2^{18}O + CO_2 \leftrightarrow H_2O + C^{18}O_2$ $^{2}H_2O + H_2 \leftrightarrow H_2O + ^{2}H_2$

Pt catalyst

- Place 200 µL of the sample in the vial
- Place all sample vials in the autosampler tray
- All vials are automatically flushed

Compound-specific isotope analysis

Compound-specific Isotope Analysis (CSIA)

LC-IRMS (Liquid chromatography) δ^{13} C in sugars, organic & amino acids etc.

Figure 2-5. Scheme of Finnigan LC IsoLink Interface and Finnigan Surwyor[®] IPEC Unit